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We examine v ibra t iona l  re laxa t ion  in a one-component  d ia tomic  gas,  the molecu les  of which 
a r e  desc r ibed  by a Morse  potent ial .  An express ion  is obtained for  the mean  number  of quanta 
of a molecule  a ssuming  there  exis ts  a sha rp  boundary which s e p a r a t e s  v ibra t ional  levels  into 
two groups~ In each group there  dominates  e i ther  v ib ra t iona l -quan tum exchange p r o c e s s e s  or  
ene rgy-exchange  p r o c e s s e s  between the v ibra t ional  and t rans la t iona l  degrees  of f r eedom.  By 
solving numer i ca l ly  the s y s t e m  of equations for  the number  of quanta and for  the d issocia t ion 
r a t e  for  t imes  l a r g e r  than the v ibra t iona l  re laxat ion  t ime ,  the dependence of the d issocia t ion 
constant  on the number  of quanta is obtained. 

It is possible, when considering thermal dissociation in a one-component diatomic gas, to distinguish 
several characteristic times [I]o First of all, there is the formation time for the distribution over vibra- 
tional levels, r*; then, there is the relaxation time for the vibrational energy (or for the number of quanta), 
rVT , and the dissociation time~ T D. In the presence of strong exchange of quanta at the lower vibrational 

levels, which occurs at fairly low gas temperatures, there exists among the characteristic times the rela- 
tion T* >> rVT << T D. In this case over the time 7* there is in the system of molecules a quasistationary 

distribution over the vibrational levels [I], which is determined by the number of vibrational quanta, slowly 

varying in time, and by the dissociation rate and gas temperature. 

To determine the number of quanta in a system of anharmonic oscillators, the system of equations 
for the equilibrium of particles at vibrational levels has been solved numerically [2, 3] or the equation for 
a harmonic oscillator has been used [4, 5]~ The applicability of the energy equation in the harmonic ap- 

proximation to a system of anharmonic oscil]ators was not discussed in [4, 5]. 

For times t > rVT the number of quanta of the system, and also the quasistationary distribution, are 
determined by only the dissociation rate~ Dissociation causes a deviation of the distribution from the equi- 
librium distribution corresponding to the gas temperature, which then affects the magnitude of the disso- 
ciation constant~ A number of papers [4-8] have been devoted to the study of this phenomenon. Treaaore 

and Marrone [6, 7] give general expressions for the kinetics of vibrational relaxation and dissociation, and 
in the harmonic approximation they obtain equations for the vibrational energy and dissociation constant. 
Kuznetsov [8] also shows in the harmonic approximation that dissociation leads to an appreciable lowering 
of the vibrational temperature and to a reduction in the dissociation rate. 

An analogous treatment of a system of harmonic oscillators is given by Kuznetsov [5]. He assumed 
that at the lower vibrational levels, where quantum-exchange processes dominate, the distribution of 
Treanore [9] is realized~ At the upper levels, where energy exchange occurs between the translational 
and vibrational degrees of freedom, a Boltzmann distribution with the gas temperature is achieved. Kuz- 
netsov [5] failed to take into account the distorting influence of dissociation on the distribution and used 
the equation for the vibrational energy in the harmonic approximation. 

In the present paper we give an expressiou for the rate of change of the number of quanta in the qua- 
sistationary regime (t >> T*) for a system of anharmonic oscillators. The obtained expression is trans- 
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formed to a simple form under the condition that there exist  a sufficiently sharp boundary separat ing the 
vibrational levels into two groups, in each of which there dominates ei ther  quantum-exchange p rocesses  or 
energy-exchange p r o c e s s e s  between the vibrational and translat ional  degrees  of f reedom. By solving nu- 
mer ica l ly  the sys tem of equations for the number of vibrational quanta and the dissociat ion rate  for t imes 
t > TVT we obtain the dependence of the dissociat ion constant on the number of quanta in the sys tem.  It 
is shown that the use of the ha rmonic -osc i l l a to r  equation leads to a considerable exaggeration of the effect 
of dissociation on the s tore  of vibrational  quanta in the sys tem and, hence, on the dissociat ion constant.  

To descr ibe the nonequilibrium dissociat ion of diatomic molecules ,  we use a kinetic equation r e p r e -  
senting the dissociation p rocess  as the motion of molecules  in energy space.  In the kinetics of t ransi t ions 
between vibrational levels we take into account only single-quantum t ransi t ions .  The population of the vi-  
brational levels and the decay rate of the molecules are determined by the probabil i t ies for v ib ra t iona l -  

(~m,m +1 translat ional  exchange PK + i~K (V-  T processes)  and for exchange of vibrational  quanta ~K +i,K (V-  V 
processes ) .  

It is assumed that dissociat ion can occur  only f rom the top vibrational level N with probabili ty PNC" 
Let us consider  the initial stage of dissociat ion on suddenly ra is ing the t ranslat ional  temperature  of the 
gas T. In this case the number of quanta in a single molecule q is less than the equilibrium number q0 at 
the gas tempera ture .  In addition, recombinat ion of atoms can be ignored. 

The sys tem of equations determining the population of the vibrational levels n K has the form 

t dnK A j (VV) ;  t dnN ..(VT) 4_ ..(WO 
n M at -~ Ajar)+ n M dt" -~ ] N - - i  . ]N- - i  - -  ~., ( 1 )  

j(w VT'VV) is the flux of par t ic les  between levels K-1 and K due to V - T  and V - V  p roces ses ;  AjK = where 
J K -  JK+l;  nM is the concentrat ion of the molecules;  and ~n M = - d n M / d t  is the dissociat ion rate of the 
molecules .  

We can write the express ion for the fluxes in the form 

]~rT) : P~--i,~ XK--t - -  PR,~--i Z~; 
N-- i  N - - i  

~ m + | ~ r n  .T m.jmt-i ]~.'y) = x ~ - i  X,~ n,,~+lk',~-h.- K ~ n~Q ~, . - l ;  (2) 
0 0 

N 

X ,  = nK/nM; Z xtr = l :  
o 

Since we are  considering conditions under which q < q0 the sums in (2) are  l inearized,  and the solution 
to the sys tem (1) for t imes t > r* is obtained in the fo rm [1, 10] 

X K= x~(i -~- )~X~); (3) 

x ~ - x  0exp - - ~ ( ~  ~ l ) ~ -  T J o-~i+t; 

Ex  Ex  Ol , 

o 
XK = 7.o -- o OF , ' x,,,+, (~Qm+,,~ ~ vm+J,~) 

where x~ is the quasis ta t ionary distribution in the absence of dissociation; E K is the energy of the K-th 
l e v e l ;  T i is the population tempera ture  of the f i r s t  excited state; fi is a factor  effectively taking into account 
the contribution to the t ransi t ion probabili ty f rom all excited states (the explicit form of fl is given in [10]); 
the quantity X0 is found f rom the normalizat ion condition. 

We see that the distribution (3) depends on the pa ramete r  T 1 or on the s tore of quanta in a single 
molecule q, which is uniquely related to T 1 . The relat ion between q and T i iS determined by 

N 

q = ~ ~xi< (4) 
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Let  us  wr i te  an equat ion fo r  the n u m b e r  of quanta .  Mult ip lying each  equa t ion  in (1) by  K and summing ,  
we obta in  

N - - I  
d~l _ ~ m~r) ~ (.V - q). (5) 

- -  JK - -  
(It 0 

Put t ing  (3) into (5), we ge t  an e x p r e s s i o n  fo r  the r a t e  of  change of the n u m b e r  of  quan ta  in the quas i s t a t i on -  
a ry  r e g i m e :  

N 
d q  __ 0 

P K +  l ,~i  x ~ §  
exp E - - Y )  i - - k  N - - q §  , z . + i  X P s - i  ~ 0 

g~+i 0 (PH+t ZR--- ](R+i �9 
(6) 

The s y s t e m  of equa t ions  (4) and (6) d e t e r m i n e s  T1 as a funct ion of t i m e .  The condi t ion  that  (4) and (6) be 
appl icable  f o r  t ime  t > r* is V*/r  D << 1. 

Equat ion  (6) s impl i f i e s  c o n s i d e r a b l y  if t he re  is a suf f ic ient ly  we l l -de f ined  boundary  n* dividing the 
v ib ra t iona l  s p e c t r u m  into two p a r t s .  In the r eg ion  of the lower  v ib ra t i ona l  l eve l s  K < n* the V - V  p r o c e s s e s  
domina te ;  in the upper  r eg ion  K > n* the V - T  p r o c e s s e s  a r e  m o s t  i m p o r t a n t .  

In this  app rox ima t ion  we have 

~ < H -  Y )  ex - ? ) ,  ~i < n* 

( ~ + 1  , ii > n * .  
(7) 

A consequence of (7) is the fact that Kq. (6) depends weakly on the form of the probabilities at the 
upper levels even for fairly high temperatures, when multiple-quantum transitions are possible. 

/~m,m h (K < When (7) is taken into account, Eq. (6) is transformed up to terms of order PK+I,K/WK+ I ,K 
n*) to the form 

aq ~(T)--'d(T,) ~(n* - q); 
d t  z anh 

0 

H e r e  q(T)  = (e E1/T - 1 ) - l i s  the n u m b e r  of quanta,  and Q(T) = (1 - e - E t / T )  -1 is  the h a r m o n i c - o s c i l l a t o r  
pa r t i t i on  funct ion.  

In the gene ra l  f o r m  (4) the dependence  of q(T1, T) is f a i r ly  compl i ca t ed .  However ,  if we c o n s i d e r  
the condi t ion  of p r e f e r e n t i a l  exc i ta t ion  of the v ib ra t iona l  d e g r e e s  of f r e e d o m  (T 1 < T), the quant i t ies  q 
ca l cu la t ed  for  the h a r m o n i c  and anha rmon ie  o s c i l l a t o r s  a re  s i m i l a r  to one ano ther  [1]. In this c a s e  we 
find 

dq ..~ qo - q _ ~, ( n *  - -  q ) .  
~7 ~-7]~anh (s )  

Let  us  c o n s i d e r  f u r t h e r  as a m o l e c u l a r  model  the M o r s e  o sc i l l a to r ,  which is c h a r a c t e r i z e d  by the 
r e l a t i ons  D = E1N/2 and N = 1/2Xe, where  D and x e a r e  the d i s soc ia t ion  potent ia l  and the a n h a r m o n i c i t y  
p a r a m e t e r .  We take the t r a n s i t i o n  p robab i l i t i e s  in the f o r m  [1, 11] 

=1  (~5) 3 - e x p [ - 6 ( l - , ~ i x ) ]  
P ~ + J ' ~ -  1 - - ~  -Pl~ ~ ~--i:xp?---67 ' 

Q~+I,K -- I -- I{/2N QI0 exp 1 N -- T.\---= ) " 2 , 

'2 

8=2VTD/T; 7 = ~ -~ 

( 9 )  
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where M and m are the reduced masses  of the colliding par t ic les  and the osci l la tor ;  ~ is the pa r ame te r  of 
the Morse potential; L is a charac te r i s t i c  length of the interact ion potential of the colliding par t ic les .  

Using (9) we find the level n* f rom the condition PK+~,K = /3Q~+I,K,.~ 

n * = - ~  t +  o , (1o) 

where Y~0 is the square of the matr ix  element for the t ransi t ion 1 ~ 0. 

Multiplying Eq. (8) by E 1 and substituting Eq. (10) into Eq. (8), we obtain 

de (T1) e (T) --  e (T1) , d ~  In ~Y10 
dt -T'-a~ T - - ~ [ D - - e ( T 1 ) - ~  E*]; E * = D ~ ,  (11) 

where ~ = Elq. For  Tan h we can take the approximate exPression f rom [9]. 

Equation (11) is analogous to the equation of the vibrational energy for a harmonic osci l la tor .  The 
difference consis ts  of the magnitude 'of the relaxation t ime and the additional t e rm E* in the coefficient of 
dnm/dt .  The quantity E* is negative, which leads to a decrease  in the effect of dissociation on the d is t r i -  
bution of the lower vibrat ional  levels for the Morse osci l la tor .  This ref lects  the weak exchange of v ibra-  
tional quanta of the lower levels with the upper ones, where the distort ion of the distribution due to the dis- 
sociation flux is mos t  important .  

The dissociat ion rate of the molecules  is determined by the equation 

t dn~ (12) 
, ~  dt = - -  ~ (T1, r )  'r (T),  

where KD(T) is the dissociat ion constant of the molecules  in an inactive gas,  obtained for the same t rans i -  
tion probabil i t ies between the levels as in the actual gas [10]. 

The factor  n(T 1, T) allows for the change in the dissociat ion rate  due to the deviation of T t f rom T, 
which is a consequence of the action of the V - V  p r o c e s s e s .  The tempera tu re  T 1 has to be found f rom the 
simultaneous solution of Eq~ (12) with Eq. (6) or  Eq. (11). The quantity ~? can be _represented approximately 
in the form 

N - - I  

n ( T1, T) , ~  

We take the exPression for  K D f rom [11], 

]~'D ~ Z e - - D / T  ( l - -  e - E , / T )  ( 2 N T / u E 1 )  '/2 G; 

G M 1 -- V-:I,'TID 3 -- exp (-- 2V) 
m I ~,- ]/-vT/D erf (]"~2"~7) e--V, 

(14) 

where z is the number of coll isions per  unit t ime. 

Let  us consider  the solution to Eqs.  (6) and (12) for t imes t >> ~VT, when dq/dt ~0 .  Putting (12)- 
(14) into (6) and using the t ransi t ion probabil i t ies  (9), we find T 1 and 77 numerical ly  for the given gas tern- 
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perature. The curves of ~(T) and TI(T) for quasistationary conditions are shown in Figs. 1 and 2 for T = 

i, 2, 3 and N = 50. Varying N from 25 to I00 does not affect the results inanessentialway. For comparison 
we also present in Figs. 1 and 2 the results of Kuznetsov [5] (dashed curves). Comparison of the curves 
shows that the use of the vibrational-energy equation in the harmonic approximation [5] exaggerates the 
effect of dissociation on the population temperature of the lower levels T I and accordingly leads to an ap- 
preciable decrease in 7. We note that in the limit of sufficiently high temperatures, when the V-T pro- 
cesses are decisive, ~ should go to unity. However, the calculation at these temperatures is not possible 
because the quasistationary distribution is inapplicable. 
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