EQUATION FOR THE NUMBER OF QUANTA
AND THE DISSOCIATION RATE IN A DIATOMIC GAS
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We examine vibrational relaxation in a one-component diatomic gas, the molecules of which
are described by a Morse potential. An expression is obtained for the mean number ofquanta
of a molecule assuming there exists a sharp boundary which separates vibrational levels into
two groups. In each group there dominates either vibrational-quantum exchange processes or
energy-exchange processes between the vibrational and translational degrees of freedom. By
solving numerically the system of equations for the number of quanta and for the dissociation
rate for times larger than the vibrational relaxation time, the dependence of the dissociation
constant on the numbher of quanta is obtained,

It is possible, when considering thermal digsociation in a one-component diatomic gas, to distinguish
several characteristic times [1]. First of all, there is the formation time for the distribution over vibra-
tional levels, 7#; then, there is the relaxation time for the vibrational energy (or for the number of quanta),
Ty and the dissociation time, 7. In the presence of strong exchange of quanta at the lower vibrational
levels, which occurs at fairly low gas temperatures, there exists among the characteristic times the rela-~
tion T > Ty < Tp. In this case over the time 7+ there is in the system of molecules a quasistationary
distribution over the vibrational levels [1], which is determined by the number of vibrational quanta, slowly
varying in time, and by the dissociation rate and gas temperature,

To determine the number of quanta in a system of anharmonic oscillators, the system of equations
for the equilibrium of particles at vibrational levels has been solved numerically [2, 3] or the equation for
a harmonic oscillator has been used [4, 5]. The applicability of the energy equation in the harmonic ap-
proximation to a system of anharmonic oscillators was not discussed in {4, 5].

For times t > 7y the number of quanta of the system, and also the quasistationary distribution, are
determined by only the dissociation rate, Dissociation causes a deviation of the distribution from the equi-
librium distribution corresponding to the gas temperature, which then affects the magnitude of the disso-
ciation constant. A number of papers {4-8] have been devoted to the study of this phenomenon. Treanore
and Marrone [6, Tlgive general expressions for the kinetics of vibrational relaxation and dissociation, and
in the harmonic approximation they obtain equations for the vibrational energy and dissociation constant.
Kuznetsov [8] also shows in the harmonic approximation that dissociation leads to an appreciable lowering
of the vibrational temperature and to a reduction in the dissociation rate.

An analogous treatment of a system of harmonic oscillators is given by Kuznetsov [5]. He assumed
that at the lower vibrational levels, where quantum-~-exchange processes dominate, the distribution of
Treanore [9] is realized. At the upper levels, where energy exchange occurs between the translational
and vibrational degrees of freedom, a Boltzmann distribution with the gas temperature is achieved, Kuz-
netsov [5] failed to take into account the distorting influence of dissociation on the distribution and used
the equation for the vibrational energy in the harmonic approximation.

In the present paper we give an expression for the rate of change of the number of quanta in the qua~
sistationary regime (t > 7*) for a system of anharmonic oscillators, The obtained expression is trans-
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formed to a simple form under the condition that there exist a sufficiently sharp boundary separating the
vibrational levels into two groups, in each of which there dominates either quantum-exchange processes or
energy—exchange processes between the vibrational and translational degrees of freedom. By solving nu-
merically the system of equations for the number of vibrational quanta and the dissociation rate for times
t > TyT we obtain the dependence of the dissociation constant on the number of quanta in the system. It

is shown that the use of the harmonic-oscillator equation leads to a considerable exaggeration of the effect
of dissociation on the store of vibrational quanta in the system and, hence, on the dissociation constant.

To describe the nonequilibrium dissociation of diatomic molecules, we use a kinetic equation repre-
senting the dissociation process as the motion of molecules in energy space. In the kinetics of transitions
between vibrational levels we take into account only single-quantum transitions, The population of the vi-
brational levels and the decay rate of the molecules are determined by the probabilities for vibrational—
translational exchange Pk +1 K (V—T processes) and for exchange of vibrational quanta Qﬁlﬁlfgi V-V

processes),

It is assumed that dissociation can occur only from the top vibrational level N with probability Pyc.
Let us consider the initial stage of dissociation on suddenly raising the translational temperature of the
gas T. In this case the number of quanta in a single molecule q is less than the equilibrium number q at
the gas temperature, In addition, recombination of atoms can be ignored.

The system of equations determining the population of the vibrational levels ng has the form

1 dng . T 1 dny Ty |, AV
@ = AWM g = NS N M
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where j K is the flux of particles between levels K-1 and K due to V—T and V—V processes; Ajg =

jk ~ JK +13 hyy is the concentration of the molecules; and Anyy =—dnyy/dt is the dissociation rate of the
molecules.

We can write the expression for the fluxes in the form
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Since we are considering conditions under which q < q the sums in (2) are linearized, and the solutmn
to the system (1) for times t > 7* is obtained in the form [1, 10]

Ty = T (1 Ay 3)
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where x‘i{ is the quasistationary distribution in the absence of dissociation; Eg is the energy of the K-th
level; T, is the population temperature of the first excited state; gis a factor effectively taking into account
the contribution to the transition probability from all excited states (the explicit form of 3 is given in[10]);
the quantity x, is found from the normalization condition,

We see that the distribution (3) depends on the parameter Ty or on the store of quanta in a single
molecule g, which is uniquely related to T,. The relation between q and T, is determined by

q= Hxry (4)
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Let us write an equation for the number of guanta, Multiplying each equation in (1) by K and summing,
we obtain

N—1
= XA =M =) (5)

Pufting (3) into (5), we get an expression for the rate of change of the number of quanta in the quasistation-
ary regime:
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The system of equations (4) and (6) determines T, as a function of time. The condition that (4) and (6) be
applicable for time t > 7 is ™/7Tp < 1,

Equation (6) simplifies considerably if there is a sufficiently well-defined boundary n* dividing the
vibrational spectrum into two parts. In the region of the lower vibrational levels K < n* the V—V processes
dominate; in the upper region K > n* the V— T processes are most important.

In this approximation we have
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A consequence of (7) is the fact that Eq. (6) depends weakly on the form of the probabilities at the
upper levels even for fairly high temperatures, when multiple-quantum transitions are possible,

When (7) is taken into account, Eq. (6) is transformed up to terms of order P11 K/Q%"finfg {K <
n*) to the form ’ ’

dg q(T)—9(T .
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Here q(T) = (e1/ T

partition function.

—1)7!is the number of quanta, and Q(T) = (1 — e‘Ei/T)“1 is the harmonic-oscillator

In the general form (4) the dependence of q(T,, T) is fairly complicated., However, if we consider
the condition of preferential excitation of the vibrational degrees of freedom (T, < T), the quantities q

calculated for the harmonic and anharmonic oscillators are similar to one another [1], In this case we
find

dq . 1 —9 *
- — A {(n* —q). (8)

“Tanh

Let us consider further as a molecular model the Morse oscillator, which is characterized by the
relations D = E;N/2 and N = 1/2xg, where D and x, are the dissociation potential and the anharmonicity
parameter. We take the transition probabilities in the form [1, 11]
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Fig, 2

where M and m are the reduced masses of the colliding particles and the oscillator; «is the parameter of
the Morse potential; L is a characteristic length of the interaction potential of the colliding particles.

Using (9) we find the level n* from the condition Py 4y g = @%JA K’

n*

vy m(evh) (10)
ol
where on is the square of the matrix element for the transition 1 —0,

'Multiplying Eq. (8) by E; and substituting Eq. (10) into Eq. (8), we obtain

.‘rv . d 1 YE
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where € = Eyq. For 7., we can take the approximate expression from [9].

Equation (11) is analogous to the equation of the vibrational energy for a harmonic oscillator. The
difference consists of the magnitude of the relaxation time and the additional term E* in the coefficient of
dnm/dt. The quantity E* is negative, which leads to a decrease in the effect of dissociation on the distri-
bution of the lower vibrational levels for the Morse oscillator. This reflects the weak exchange of vibra-
tional quanta of the lower levels with the upper ones, where the distortion of the distribution due to the dis-
sociation flux is most important,

The dissociation rate of the molecules is determined by the equation

1 dn, (12)
‘;;I = —n(Ty, T)xp(T),

where KD(T) is the dissociation constant of the molecules in an inactive gas, obtained for the same transi-
tion probabilities between the levels as in the actual gas [10].

The factor n(T,, T) allows for the change in the dissociation rate due to the deviation of T, from T,
which is a consequence of the action of the V—V processes, The temperature T, has to be found from the
simultaneous solution of Eq. (12) with Eq, (6) or Eq. (11). The quantity 5 can be represented approximately
in the form

7. - ]E E '.
n(Tlva T)zg‘—z_zi‘)ﬁl;[o [(PK-H. exp (—1—1- —T-’I)J‘ (13)

We take the expression for Ky from [11],

Kp = ze—D/T (1 — e—EuT) (2NT/nE,) " G;
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(14)

where z is the number of collisions per unit time.

Let us consider the solution to Egs. (6) and (12) for times t > Ty, when dq/dt =0, Putting (12)-
(14) into (6) and using the transition probabilities (9), we find T, and  numerically for the given gas tem-
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perature, The curves of n(T) and T(T) for quasistationary conditions are shown in Figs. 1 and 2 for vy =

1, 2,3 and N = 50, Varying N from 25 to 100 does not affect the results inanessential way. For comparison
we also present in Figs, 1 and 2 the results of Kuznetsov [5] (dashed curves), Comparison of the curves
shows that the use of the vibrational-energy equation in the harmonic approximation [5] exaggerates the
effect of dissociation on the population temperature of the lower levels T, and accordingly leads to an ap-
preciable decrease in . We note that in the limit of sufficiently high temperatures, when the V—T pro-
cesses are decisive, n should go to unity, However, the calculation at these temperatures is not possible
because the quasistationary distribution is inapplicable.

10,
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